

 SciPy Cookbook

 latest

 	Input & Output
	Interfacing With Other Languages
	Interpolation
	Linear Algebra
	Matplotlib
	Mayavi
	Numpy
	Optimization and fitting
	Ordinary differential equations
	Other examples
	Performance
	Root finding
	Scientific GUIs
	Scientific Scripts
	Signal processing	Applying a FIR filter
	Butterworth Bandpass
	Communication theory
	FIR filter
	Filtfilt
	Frequency swept signals
	Kalman filtering
	Savitzky Golay Filtering
	Smoothing of a 1D signal

	Outdated

 SciPy Cookbook

 	Contents »
	Signal processing »
	Savitzky Golay Filtering
	
	
	Github
	Download
	

Savitzky Golay Filtering¶

	Date:	2012-09-06 (last modified), 2007-03-06 (created)

The Savitzky Golay filter is a particular type of low-pass filter, well
adapted for data smoothing. For further information see:
http://www.wire.tu-bs.de/OLDWEB/mameyer/cmr/savgol.pdf (or
http://www.dalkescientific.com/writings/NBN/data/savitzky_golay.py for
a pre-numpy implementation).

Sample Code¶

In []:

#!python
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
 r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
 The Savitzky-Golay filter removes high frequency noise from data.
 It has the advantage of preserving the original shape and
 features of the signal better than other types of filtering
 approaches, such as moving averages techniques.
 Parameters

 y : array_like, shape (N,)
 the values of the time history of the signal.
 window_size : int
 the length of the window. Must be an odd integer number.
 order : int
 the order of the polynomial used in the filtering.
 Must be less then `window_size` - 1.
 deriv: int
 the order of the derivative to compute (default = 0 means only smoothing)
 Returns

 ys : ndarray, shape (N)
 the smoothed signal (or it's n-th derivative).
 Notes

 The Savitzky-Golay is a type of low-pass filter, particularly
 suited for smoothing noisy data. The main idea behind this
 approach is to make for each point a least-square fit with a
 polynomial of high order over a odd-sized window centered at
 the point.
 Examples

 t = np.linspace(-4, 4, 500)
 y = np.exp(-t**2) + np.random.normal(0, 0.05, t.shape)
 ysg = savitzky_golay(y, window_size=31, order=4)
 import matplotlib.pyplot as plt
 plt.plot(t, y, label='Noisy signal')
 plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
 plt.plot(t, ysg, 'r', label='Filtered signal')
 plt.legend()
 plt.show()
 References

 .. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of
 Data by Simplified Least Squares Procedures. Analytical
 Chemistry, 1964, 36 (8), pp 1627-1639.
 .. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing
 W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
 Cambridge University Press ISBN-13: 9780521880688
 """
 import numpy as np
 from math import factorial

 try:
 window_size = np.abs(np.int(window_size))
 order = np.abs(np.int(order))
 except ValueError, msg:
 raise ValueError("window_size and order have to be of type int")
 if window_size % 2 != 1 or window_size < 1:
 raise TypeError("window_size size must be a positive odd number")
 if window_size < order + 2:
 raise TypeError("window_size is too small for the polynomials order")
 order_range = range(order+1)
 half_window = (window_size -1) // 2
 # precompute coefficients
 b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
 m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
 # pad the signal at the extremes with
 # values taken from the signal itself
 firstvals = y[0] - np.abs(y[1:half_window+1][::-1] - y[0])
 lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
 y = np.concatenate((firstvals, y, lastvals))
 return np.convolve(m[::-1], y, mode='valid')

Code explanation¶
In lines 61-62 the coefficients of the local least-square polynomial fit
are pre-computed. These will be used later at line 68, where they will
be correlated with the signal. To prevent spurious results at the
extremes of the data, the signal is padded at both ends with its mirror
image, (lines 65-67).

Figure¶
[image:]

CD-spectrum of a protein. Black: raw data. Red: filter applied

A wrapper for cyclic voltammetry data¶
One of the most popular applications of S-G filter, apart from smoothing
UV-VIS and IR spectra, is smoothing of curves obtained in
electroanalytical experiments. In cyclic voltammetry, voltage (being the
abcissa) changes like a triangle wave. And in the signal there are cusps
at the turning points (at switching potentials) which should never be
smoothed. In this case, Savitzky-Golay smoothing should be done
piecewise, ie. separately on pieces monotonic in x:

In []:

#!python numbers=disable
def savitzky_golay_piecewise(xvals, data, kernel=11, order =4):
 turnpoint=0
 last=len(xvals)
 if xvals[1]>xvals[0] : #x is increasing?
 for i in range(1,last) : #yes
 if xvals[i]<xvals[i-1] : #search where x starts to fall
 turnpoint=i
 break
 else: #no, x is decreasing
 for i in range(1,last) : #search where it starts to rise
 if xvals[i]>xvals[i-1] :
 turnpoint=i
 break
 if turnpoint==0 : #no change in direction of x
 return savitzky_golay(data, kernel, order)
 else:
 #smooth the first piece
 firstpart=savitzky_golay(data[0:turnpoint],kernel,order)
 #recursively smooth the rest
 rest=savitzky_golay_piecewise(xvals[turnpoint:], data[turnpoint:], kernel, order)
 return numpy.concatenate((firstpart,rest))

Two dimensional data smoothing and least-square gradient estimate¶
Savitsky-Golay filters can also be used to smooth two dimensional data
affected by noise. The algorithm is exactly the same as for the one
dimensional case, only the math is a bit more tricky. The basic
algorithm is as follow: 1. for each point of the two dimensional matrix
extract a sub-matrix, centered at that point and with a size equal to an
odd number "window_size". 2. for this sub-matrix compute a least-square
fit of a polynomial surface, defined as p(x,y) = a0 + a1*x + a2*y +
a3*x\^2 + a4*y\^2 + a5*x*y + Note that x and y are equal to
zero at the central point. 3. replace the initial central point with the
value computed with the fit.

Note that because the fit coefficients are linear with respect to the
data spacing, they can pre-computed for efficiency. Moreover, it is
important to appropriately pad the borders of the data, with a mirror
image of the data itself, so that the evaluation of the fit at the
borders of the data can happen smoothly.

Here is the code for two dimensional filtering.

In []:

#!python numbers=enable
def sgolay2d (z, window_size, order, derivative=None):
 """
 """
 # number of terms in the polynomial expression
 n_terms = (order + 1) * (order + 2) / 2.0

 if window_size % 2 == 0:
 raise ValueError('window_size must be odd')

 if window_size**2 < n_terms:
 raise ValueError('order is too high for the window size')

 half_size = window_size // 2

 # exponents of the polynomial.
 # p(x,y) = a0 + a1*x + a2*y + a3*x^2 + a4*y^2 + a5*x*y + ...
 # this line gives a list of two item tuple. Each tuple contains
 # the exponents of the k-th term. First element of tuple is for x
 # second element for y.
 # Ex. exps = [(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...]
 exps = [(k-n, n) for k in range(order+1) for n in range(k+1)]

 # coordinates of points
 ind = np.arange(-half_size, half_size+1, dtype=np.float64)
 dx = np.repeat(ind, window_size)
 dy = np.tile(ind, [window_size, 1]).reshape(window_size**2,)

 # build matrix of system of equation
 A = np.empty((window_size**2, len(exps)))
 for i, exp in enumerate(exps):
 A[:,i] = (dx**exp[0]) * (dy**exp[1])

 # pad input array with appropriate values at the four borders
 new_shape = z.shape[0] + 2*half_size, z.shape[1] + 2*half_size
 Z = np.zeros((new_shape))
 # top band
 band = z[0, :]
 Z[:half_size, half_size:-half_size] = band - np.abs(np.flipud(z[1:half_size+1, :]) - band)
 # bottom band
 band = z[-1, :]
 Z[-half_size:, half_size:-half_size] = band + np.abs(np.flipud(z[-half_size-1:-1, :]) -band)
 # left band
 band = np.tile(z[:,0].reshape(-1,1), [1,half_size])
 Z[half_size:-half_size, :half_size] = band - np.abs(np.fliplr(z[:, 1:half_size+1]) - band)
 # right band
 band = np.tile(z[:,-1].reshape(-1,1), [1,half_size])
 Z[half_size:-half_size, -half_size:] = band + np.abs(np.fliplr(z[:, -half_size-1:-1]) - band)
 # central band
 Z[half_size:-half_size, half_size:-half_size] = z

 # top left corner
 band = z[0,0]
 Z[:half_size,:half_size] = band - np.abs(np.flipud(np.fliplr(z[1:half_size+1,1:half_size+1])) - band)
 # bottom right corner
 band = z[-1,-1]
 Z[-half_size:,-half_size:] = band + np.abs(np.flipud(np.fliplr(z[-half_size-1:-1,-half_size-1:-1])) - band)

 # top right corner
 band = Z[half_size,-half_size:]
 Z[:half_size,-half_size:] = band - np.abs(np.flipud(Z[half_size+1:2*half_size+1,-half_size:]) - band)
 # bottom left corner
 band = Z[-half_size:,half_size].reshape(-1,1)
 Z[-half_size:,:half_size] = band - np.abs(np.fliplr(Z[-half_size:, half_size+1:2*half_size+1]) - band)

 # solve system and convolve
 if derivative == None:
 m = np.linalg.pinv(A)[0].reshape((window_size, -1))
 return scipy.signal.fftconvolve(Z, m, mode='valid')
 elif derivative == 'col':
 c = np.linalg.pinv(A)[1].reshape((window_size, -1))
 return scipy.signal.fftconvolve(Z, -c, mode='valid')
 elif derivative == 'row':
 r = np.linalg.pinv(A)[2].reshape((window_size, -1))
 return scipy.signal.fftconvolve(Z, -r, mode='valid')
 elif derivative == 'both':
 c = np.linalg.pinv(A)[1].reshape((window_size, -1))
 r = np.linalg.pinv(A)[2].reshape((window_size, -1))
 return scipy.signal.fftconvolve(Z, -r, mode='valid'), scipy.signal.fftconvolve(Z, -c, mode='valid')

Here is a demo

In []:

#!python number=enable

create some sample twoD data
x = np.linspace(-3,3,100)
y = np.linspace(-3,3,100)
X, Y = np.meshgrid(x,y)
Z = np.exp(-(X**2+Y**2))

add noise
Zn = Z + np.random.normal(0, 0.2, Z.shape)

filter it
Zf = sgolay2d(Zn, window_size=29, order=4)

do some plotting
matshow(Z)
matshow(Zn)
matshow(Zf)

attachment:Original.pdf Original data
attachment:Original+noise.pdf Original data + noise
attachment:Original+noise+filtered.pdf (Original data + noise) filtered

Gradient of a two-dimensional function¶
Since we have computed the best fitting interpolating polynomial surface it is easy to compute its gradient. This method of computing the gradient of a two dimensional function is quite robust, and partially hides the noise in the data, which strongly affects the differentiation operation. The maximum order of the derivative that can be computed obviously depends on the order of the polynomial used in the fitting.

The code provided above have an option derivative, which as of now allows to compute the first derivative of the 2D data. It can be "row"or "column", indicating the direction of the derivative, or "both", which returns the gradient.

Section author: Unknown[11], Unknown[139], Unknown[140], Unknown[141], WarrenWeckesser, WarrenWeckesser, thomas.haslwanter

Attachments

	Original+noise+filtered.pdf
	Original+noise.pdf
	Original.pdf
	cd_spec.png

 Next

 Previous

 © Copyright 2015, Various authors

 Revision 5e2833af.

 Built with Sphinx using a theme provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest

 	Downloads
	html

 	On Read the Docs
	
 Project Home

	
 Builds

 Free document hosting provided by Read the Docs.

